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Complex magnetohydrodynamic low-Reynolds-number flows

Yu Xiang and Haim H. Bau*
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia,

Pennsylvania 19104-6315, USA
~Received 29 January 2003; published 28 July 2003!

The interaction between electric currents and a magnetic field is used to produce body~Lorentz! forces in
electrolyte solutions. By appropriate patterning of the electrodes, one can conveniently control the direction
and magnitude of the electric currents and induce spatially and temporally complicated flow patterns. This
capability is useful, not only for fundamental flow studies, but also for inducing fluid flow and stirring in
minute devices in which the incorporation of moving components may be difficult. This paper focuses on a
theoretical and experimental study of magnetohydrodynamic flows in a conduit with a rectangular cross
section. The conduit is equipped with individually controlled electrodes uniformly spaced at a pitchL. The
electrodes are aligned transversely to the conduit’s axis. The entire device is subjected to a uniform magnetic
field. The electrodes are divided into two groupsA andC in such a way that there is an electrode of groupC
between any two electrodes of groupA. We denote the variousA andC electrodes with subscripts, i.e.,Ai and
Ci , wherei 50,61,62, ... . When positive and negative potentials are, respectively, applied to the even and
odd numberedA electrodes, opposing electric currents are induced on the right and left hand sides of eachA
electrode. These currents generate transverse forces that drive cellular convection in the conduit. We refer to
the resulting flow pattern asA. When electrodes of groupC are activated, a similar flow pattern results, albeit
shifted in space. We refer to this flow pattern asC. By alternating periodically between patternsA andC, one
induces Lagrangian chaos. Such chaotic advection may be beneficial for stirring fluids, particularly in microf-
luidic devices. Since the flow patternsA and C are shifted in space, they also provide a mechanism for
Lagrangian drift that allows net migration of passive tracers along the conduit’s length.

DOI: 10.1103/PhysRevE.68.016312 PACS number~s!: 47.52.1j, 47.65.1a
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I. INTRODUCTION

In recent years, there has been a growing interest in
veloping minute laboratories on a chip to facilitate chemi
reactions and biological interactions. Efficient mixing a
stirring of various reagents are essential to facilitate tim
operation. In minute devices, stirring is a challenge since
flows are at very low Reynolds numbers, turbulence is
available to promote mixing, and it is difficult to insert mo
ing components into these devices. Not surprisingly, a g
amount of effort has been invested in devising various me
for fluid stirring. One such means is based on chaotic adv
tion or Lagrangian chaos@1#. The basic idea is to temporall
and/or spatially alternate between two or more flow patte
With an appropriate choice of such patterns, one can ge
ate quite complicated trajectories of passive tracers. Lagra
ian chaos is attractive since it does not require high Reyn
numbers. For example, various authors@1–3# have studied,
theoretically and experimentally, flow through two- an
three-dimensional ‘‘twisted’’ conduits. The twists~or bends!
induce counter-rotating vortices that under certain conditi
interact to induce chaotic advection. Stroocket al. @4# imple-
mented a similar idea by machining into their flow condu
oblique grooves with different angles with respect to the fl
direction. All the methods described above require a pres
source to drive the flow. In some cases, pressure sources
not be convenient to use, and it is desirable to consider
ternatives.

*Author to whom correspondence should be addressed. Electr
address: bau@seas.upenn.edu
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One such alternative is the use of Lorentz forces or m
netohydrodynamics~MHD!. The application of electromag
netic forces to pump, confine, and control fluids is by
means new. To date, however, magnetohydrodynamics
mostly been used to pump and control highly conduct
fluids such as liquid metals and ionized gases and to st
ionospheric/astrophysical plasmas@5#. The potential use of
electromagnetic forces in small devices has attracted m
less attention. Recently, though, Jang and Lee@6#, Lemoff
and Lee@7#, and Zhonget al. @8# constructed MHD micro-
pumps on silicon and ceramic substrates and demonstr
that these pumps are able to move liquids around in mic
conduits. The liquids need to be at least sligh
conductive—a requirement met by many biological so
tions.

Subsequently, Bauet al. @9–11# demonstrated the feasibil
ity of using magnetohydrodynamic forces to control flu
flow in minute fluidic networks. The basic building bloc
~branch! of such a network consists of a conduit with tw
electrodes deposited along its two opposing walls. The c
duit is filled with an electrolyte solution. Many conduits a
connected to form a network. The entire device is subjec
to a uniform magnetic field. When a potential difference
applied across the wall electrodes, the resulting current in
acts with the magnetic field to form body~Lorentz! forces
that propel the fluid. By judicious application of differen
potential differences to different electrode pairs, one can
rect the liquid to follow any desired path without the need
mechanical pumps and valves. In other words, MHD allo
one to control fluid flow in a minute fluidic network in ver
ic
©2003 The American Physical Society12-1



p
in
b
e

in
tr

ica
tu
d
it
A
th
in-

a
t

ng
ll

ar

a
le

ue

it

-

ar
-
igh
ce
lls
s

de

-
e

he
us
.
s
se

a-
a-

ef.

ent

u-
w:

to

and

ro
t

, t

Y. XIANG AND H. H. BAU PHYSICAL REVIEW E 68, 016312 ~2003!
much the same way as one controls electric current flow
an electronic circuit.

Since one can readily pattern electrodes of various sha
one can induce electric fields in different directions. The
teraction of such electric fields with the magnetic field can
used to induce secondary complex flows that may be ben
cial for stirring and mixing@12–14#. In this paper, we de-
scribe yet another way of inducing complex flow patterns
a conduit. The ideas articulated here can be used to cons
a MHD stirrer.

The paper is organized as follows. The mathemat
model is described in Sec. II. The experimental appara
and the processing of the experimental data are detaile
Sec. III. Section IV compares the theoretical predictions w
experimental observations, and Sec. V concludes. The
pendix describes refinements in the theoretical solution
facilitate accurate computation of the flow field while reta
ing only a few terms in the series solution.

II. MATHEMATICAL MODEL

The stirrer consists of a long, liquid-filled conduit with
rectangular cross section. Figure 1 depicts schematically
top ~cross section I-I! and the side~cross section II-II! views.
The conduit’s width and height are, respectively,W and 2h.
The x, y, and z coordinates are, respectively, aligned alo
the conduit’s axis, width, and height. The conduit’s sidewa
are electrically insulating. Uniformly spaced electrodes
positioned transversely to the conduit’s axis with a pitchL.
In other words, the electrodes are placed atx856nL and
z856h, wheren50,1,2, ... . The prime denotes dimension
quantities that will later be made dimensionless. The e
trodes are divided into two groupsA and C in such a way
that there is always an electrode of groupC between any two
A electrodes. The electrodes within each group are seq
tially numbered asA6n andC6n . For simplicity, we assume
that the electrodes have zero width and height. The condu
filled with an electrolyte solution of viscositym and electric
conductivitys. The conduit is positioned in a uniform mag
netic field of magnitude (B5Bêz) in the z direction.

When positive and negative potentials, respectively,
applied to even and odd numberedA electrodes, electric cur
rents in opposite directions are induced on the left and r
hand sides of theA electrodes. These currents, in turn, indu
body~Lorentz! forces directed toward the conduit’s sidewa
in opposite directions on the two sides of the electrodes. A

FIG. 1. Schematic top view~left! and cross section~right! de-
pictions of the stirrer. Black gray lines correspond, respectively
electrodes of groupsA andC.
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result, cellular convection is induced around the electro
with the fluid moving in the positivey direction on one side
of the electrode and in the negativey direction on the other
side. The cells have a width of 2L.

According to Ohm’s law for a moving conductor of con
ductivity s in a magnetic field, the potential differenc
(DV5V12V2) induces a current of density

J5s~2“V1u83B!. ~1!

In the above, bold letters represent vectors;u85$u,v,w% is
the fluid’s velocity;u, v, andw are, respectively, the velocity
components in thex, y, andz directions; andV is the electric
potential.

Since we are concerned with relatively slow flows, t
term u83B can be neglected. Below, we write the vario
equations in dimensionless form usingL as the length scale
In other words, the electrodesA6n are positioned at location
x562n. Furthermore, we restrict ourselves to the ca
W/L;O(1) and h/L!1. Since in our experimenth/L
50.18, we use the two-dimensional Hele-Shaw approxim
tion @15#. The error induced by the Hele-Shaw approxim
tion is estimated to be of the order of (h/L)2. For further
discussion of this approximation, see the appendix to R
@13#.

The current’s density in the interval between two adjac
electrodesCn21 andCn is

J8;J0@sgn~x22n!#êx ~2n21,x,2n11!, ~2!

whereJ0;sDV/2L. Sgn(x) is positive~negative! for posi-
tive ~negative! arguments, and it equals zero for a zero arg
ment. The momentum equation has the form of Darcy’s la

u5
1

2
@“p1@sgn~x22n!#êy# ~2n21,x,2n11!.

~3!

The continuity equation is

“•u50. ~4!

Below, without loss of generality, we restrict ourselves
the interval21,x,1. u5(u,v) is the two-dimensional ve-
locity vector.p is the pressure.U5J0B0h2/m is the velocity
scale,L/U is the time scale, andmUL/h2 is the pressure
scale. The boundary conditions include impermeable top
bottom walls,

nS x,6
Ŵ

2
D 50, ~5!

and symmetry conditions atx561,

u~61,y!50, ~6!

whereŴ5W/L is the aspect radio. The assumption of a ze
thickness electrode results in a pressure discontinuity ax
50,

o

2-2
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S ]p

]y
D

x→01

2S ]p

]y
D

x→02

52. ~7!

It is convenient to introduce the stream functionC(x,y).
In terms of the stream function, Eq.~3! assumes the form

¹2C522(
k50

` H cosF ~2k11!px

2 G J ~ uxu<1!. ~8!

The corresponding boundary conditions are

CS x,6
Ŵ

2
D 50 and C~61,y!50. ~9!

Equations~8! and ~9! can be readily solved, and the ve
locity components are

u5
]C

]y
5 (

k50

`
2

m

sinh~my!

cosh~mŴ/2!
cos@mx# ~ uxu<1!

~10!
to

s
e-
rr
d
w
e

-
ap
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n52
]C

]x
52 (

k50

`
2

m H cosh~my!

cosh~mŴ/2!
21J sin@mx#

~ uxu<1!. ~11!

In the above,m5(2k11)p/2. Later in the paper, we will
compute the trajectories of passive tracers. These comp
tions require numerous evaluations of the velocity com
nents at different$x,y% locations. Unfortunately, due to th
singularity of the function sgn(x) at x50, the series~10! and
~11! converge slowly~like k21) when uyu→Ŵ/2. To over-
come this shortcoming, we recast the series~10! and~11! in
terms of functions that mimic the singularities of the origin
problem. We provide the results below and defer the deri
tion to the Appendix.

The series~10! and~11!, rewritten in the rapidly converg-
ing form, are
u52
1

2p
(
k50

`

~21!k lnH cosh@~y1Ŵ/21kŴ!p#1cos~px!

cosh@~2y1Ŵ/21kŴ!p#2cos~px!

cosh@~y1Ŵ/21kŴ!p#2cos~px!

cosh@~y1Ŵ/21kŴ!p#1cos~px!
J ~ uxu<1! ~12!

and

n5
1

2
sgn~x!2

1

p
(
k50

`

~21!kFarctanH sin~px!

sinh@~2y1Ŵ/21kŴ!p#
J 1arctanH sin~px!

sinh@~y1Ŵ/21kŴ!p#
J G ~ uxu<1!. ~13!
u-

s
g,

col
Typically, it is sufficient to retain five terms in these series
obtain a precision better thanO(1025). For further details on
the series’ convergence, see the Appendix.

When the electrodesA are active, the flow field consist
of convective cells with spatial periodicity 2. Figure 2 d
picts the corresponding streamlines. The streamlines co
spond to the trajectories of passive particle tracers inserte
the flow. We refer to the flow field depicted in Fig. 2 as flo
patternA. A similar flow field, albeit shifted distance 1 in th
x direction, is observed when only electrodesC are active
~and electrodesA are disconnected!. We refer to the latter
flow field as patternC.

Next, we activate alternately electrodesA andC with the
dimensionless periodT. When the frequency of the alterna
tions is relatively slow, one can invoke the quasistatic
proximation, and the trajectories of a passive tracer part
can be computed by solving the kinematic equations

ẋ~ t !5VA~ t !u~A!~x,y!1VC~ t !u~C!~x,y! ~14!

and

ẏ~ t !5VA~ t !n~A!~x,y!1VC~ t !n~C!~x,y! ~15!
e-
in

-
le

with the initial conditionsx(0)5x0 , y(0)5y0 . The sub-
scriptsA andC refer, respectively, to patternsA andC. The
time-dependent functionsVA(t) and VC(t) define the stir-
ring protocol. One can explore various types of time mod
lation @various functionsV(t)]. For brevity, we select the
simple on-off protocol

VA~ t !5H 1, nT,t,S n1
1

2DT,

0, S n1
1

2DT,t,~n11!T,

VC~ t !5H 0, nT,t,S n1
1

2DT,

1, S n1
1

2DT,t,~n11!T.

~16!

The resulting flow field is periodic in time with periodicityT.
Aref and Balachandar@1# investigated the effects of variou
protocols on the kinematics of the flow between two rotatin
eccentric cylinders and determined that an on-off proto
2-3
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FIG. 2. The streamlines when electrodes of typeA are continuously active. The dashed lines depict the positions of the active elect
The arrows indicate the flow direction.
t
ha

ely

y

per-
f

ha-
gives qualitatively indistinguishable results compared
those obtained with smoother protocols. Finally, we note t
the more interesting flow phenomena occur whenT is rela-
tively large and when the quasistatic approximation is lik
to be valid.

Although physically unrealistic, it is instructive to stud
the flow field in the limit of T→0 ~high switching fre-
01631
o
t
quency!. In this limit, Eqs.~14! and~15! form a Hamiltonian
system, and they are integrable. Figure 3 depicts the su
posed flow fieldA1C. The figure illustrates the existence o
saddle~hyperbolic! points at$x,y%5$(4k11)/2,0% (kPZ)
~see the magnified image on the right!. Saddle~hyperbolic-
fixed! points are desirable since when they are perturbed c
otic advection and efficient stirring result@16#.
n the
FIG. 3. The superposed streamlines of flow patternsA andC. The dashed lines depict the positions of the electrodes. The inset o
right depicts a magnified view of the saddle point region.
2-4
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WhenT.0, Eqs.~14! and ~15! are no longer integrable
and we must resort to numerical techniques. To this end,
use the fourth order accurate Runge-Kutta solver~ODE45! in
MATLAB . The predicted flow patterns whenT.0 are reported
in Sec. IV.

III. EXPERIMENTAL APPARATUS AND PROCEDURE

To verify the theoretical predictions, we carried out flo
visualization experiments. The apparatus consists of a c
duit of length 750 mm, widthW55.0 mm, and height 2h
52.8 mm fabricated with Proteus Homopolymer~Poly Hi
Solidur!. To facilitate easy flow visualization, we did not ca
the conduit in the experiments. The electrodes were form
with 0.5 mm diameter copper wires stretched along the c
duit’s bottom. The electrodes were uniformly spaced with
pitch of L57.5 mm. The conduit was filled with 0.1M so-
dium chloride~NaCl! solution.

The electrodes were divided into two groups. Each gro
was connected through a computer-controlled relay actu
~Advantech PCL735! to a power supply~Hewlett-Packard
6032A!. The device was positioned on top of a neodymiu
~NdFeB, Polymag Inc.! permanent magnet that provided
nearly uniform magnetic field of intensityB;0.4 T. The
magnetic field’s intensity was measured with a gaussme

The electric potentials applied to the electrode grou
were about 1.5 V and the total electric current in the flow c
was 1.1560.25 mA. At this potential level, there was n
significant bubble generation. The current was measu
with a Digital Multimeter~Hewlett-Packard 3458A!.

In some of the experiments, we visualized the flow fie
by introducing a drop of dye~Fluorescent Liquid Dye, Cole
Parmer Instrument Company, with an estimated diffusion
efficient of 2.531029 m2/s) at various locations inside th
channel and tracking its evolution as a function of time.
other experiments, we traced a line of dye along the c
duit’s midwidth and tracked its deformation as a function
time. The spread and progression of the dye were monito
with a digital camera~Nikon Cooplix 995!.

To obtain some estimate of the experimental time c
stant, we compared the predicted and measured velociti
$x,y%5$0.5,0%. The theory predicts that the dimensionle
velocity (v) in they direction is about 0.25. The correspon
ing value measured in the experiments was 1 mm/s. We c
clude therefore that the velocity scale in the experiment
U;4 mm/s and that the corresponding time scale isL/U
;1.8 s. Comparisons between predicted and observed
traces indicated, however, that a better qualitative agreem
between theory and experiment was obtained when a so
what smaller time constant of 1 s was used.

The color images obtained from the experiments w
transferred toMATLAB ’s image processing toolbox. The num
ber of pixels that were contained in the image depended
the size and quality of the image. Typically a pixel repr
sented a square area of 0.130.1 mm2. Before the introduc-
tion of the dye, we took an image of the experimental se
to obtain the ‘‘background.’’ Subsequently, the backgrou
was subtracted from all the images. The process is illustra
in Fig. 4. Figures 4~a! and 4~b! are, respectively, the gra
01631
e

n-

d
n-
a

p
or

r.
s
ll

d

-

-
f
ed

-
at

n-
is

ye
nt
e-

e

n
-

p
d
ed

scale versions of the photographs of the original image at
start of the experiment and the same image after the sub
tion of the background.

To monitor the area occupied by the dye, we constructe
filter. Briefly, the computer assigned to each pixel three nu
bers corresponding to the red, green, and blue color inte
ties. We found it convenient to work with the green colo
The green intensity of pixel~i,j! was denotedgi , j . The con-
trast level of the image was intensified using the contr
enhancement filter withinMATLAB @17#. In brief, each pixel’s
value was recalculated as a weighted average of itself an
nearest neighbors. Subsequently, the pixel values (gi , j ) were
normalized to a scale ranging between 0 and 1. Next,
average intensity was calculated and denoted asḡ. A thresh-
old valueg05ḡ1m was defined, wherem was assigned the
value of 0.15. Pixels with valuesgi , j>ḡ and gi , j,ḡ were
assigned, respectively, values of 1 and 0.

Figure 4~c! depicts the processed image in which the p
els were assigned values of 1~white! and 0~black!. Finally,
we counted the total number of the 1-valued pixels to obt
the areas covered by dye at various times. Alternatively,
can find the sum of the 1-valued pixels at anyx location to

FIG. 4. Image processing steps to obtain the area covered
dye as a function of time:~a! raw image;~b! image after back-
ground subtraction;~c! image pixels assigned value of 0~black! in
the absence of dye and 1~white! in the presence of dye; and~d! the
sum of the pixels along they coordinate as a function ofx.
2-5
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Y. XIANG AND H. H. BAU PHYSICAL REVIEW E 68, 016312 ~2003!
obtain the dye-occupied pixels as a function ofx. Figure 4~d!
is an example of the sum of the pixels’ values along thy
direction as a function ofx.

The reduction in the dye’s intensity is a result of the m
lecular diffusion process. In the absence of diffusion, the a
occupied by the dye would have been conserved. Never
less, the rate of the spread of the dye provides a measu
the stirring efficiency since, as the length of the interfa
between the dyed and clear fluid increases, molecular d
sion becomes more effective. Hence, indirectly, the rate
the spread of the dye provides an indirect measure of the
of elongation of the interface between the dye blob and
clear fluid.

Our attempts to measure the edge length of the blob
dye as a function of time were frustrated by the comp
topology of this interface. As an alternative, we tracked
length of an initially straight trace of dye as a function
time. The processing steps of the experimental data are
picted in Fig. 5. Figure 5~a! is the photograph of an initially
straight trace of dye inserted along the device’s midheig
The figure was retouched manually to improve the cont
between the dye and the background in the electrodes’ vi
ity. Subsequently, the background was subtracted@Fig. 5~b!#.
We started withMATLAB ’s edge recognition routine to iden
tify the pixels associated with the line’s boundaries. Wh
we compared the values obtained with this method w
known lengths of calibration curves, we observed a relativ
large error~about 20%!. As an alternative, we usedMATLAB ’s
spline function to approximate the curve locally with piec
wise continuous~cubic! polynomials. To this end, we spec
fied interpolating nodes~pixels! on the line trace@shown as
circles in Fig. 5~c!#. The precision of this approximation in
creases as the number of nodes increases. An example
fitting spline curve is depicted in Fig. 5~d!. The length of the
line was estimated by integrating the piecewise continu

FIG. 5. Image processing steps to obtain the length of an
tially straight trace of dye as a function of time.T5t54. ~a! Raw
image;~b! image after manual retouch and background subtract
~c! nodes chosen for spline approximation;~d! an approximated
piecewise polynomial curve determined with the spline function
MATLAB .
01631
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interpolating functions. The lengths of calibration curves o
tained with the spline technique were in excellent agreem
with known values.

IV. RESULTS AND DISCUSSION

We carried out numerical simulations and flow visualiz
tion experiments for various periodsT. We started by com-
paring the experimental results and the theoretical pre
tions when only one set of electrodes is active~i.e.,
electrodesA!. Both in the experiment and theory, we track
the evolution of an initially straight line of ‘‘dye’’ inserted
along the conduit’s midwidth. Figure 6 depicts the dye tra
at various times. The left and right columns correspond,
spectively, to the experimental observations and the theo
ical predictions. Figures 6~a!, 6~b!, 6~c!, and 6~d! correspond,
respectively, to timest50, 1, 2, and 3. The traces are co
sistent with a set of counter-rotating convective cells
width 2L centered about electrodesAn . The experiments and
theory are in good qualitative agreement.

When T52 s, Fig. 7 depicts the experimental observ
tions ~left! and theoretical predictions~right! of the evolution
of a drop of dye at timest50 ~a!, T ~b!, 2T ~c!, 3T ~d!, 4T
~e!, 5T ~f!, 6T ~g!, 7T ~h!, 8T ~i!, and 12T ~j!. To facilitate
the comparison with theory, we processed the experime
image at timet50 to obtain the coordinates of the drop. Th
provided us with the initial conditions for the numerical in
tegration. The theoretical images were obtained by integ
ing the trajectories of 1500 passive tracer ‘‘particles.’’ T
experimental observations and theoretical predictions ar
good qualitative agreement: witness the stretching and f
ing that are characteristic of chaotic advection. The cha
island is, however, confined to a small region around
superposed trajectory of flow patternsA and C that passes
through the hyperbolic fixed point. It is instructive to com
pare Fig. 7~j! with Fig. 3. The presence of the saddle, hyp
bolic point is clearly visible. WhenT is small, the passive
tracer trajectories approximately track the streamlines a

i-

n;

FIG. 6. Deformation of an initially straight line of dye placed
the channel’s midheight. ElectrodesA are continuously active. The
left and right columns correspond, respectively, to experimental
servations and theoretical predictions at various timest50 s ~a!, 1 s
~b!, 2 s ~c!, and 3 s~d!.
2-6
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ciated with the superposed flows.
As T increases so does the size of the chaotic reg

Figure 8 depicts the experimental observations and the t
retical predictions for the spread of a drop of dye whenT
55 s. As in Fig. 7, the image at the beginning of the expe
ment was processed to obtain the locations of the pixels
sociated with the area occupied by the dye att50. These
pixels then provided the initial conditions for the numeric
simulations. In the numerical simulations, we integrated
trajectories of about 3000 points that the image proces
algorithm identified as having a pixel value of 1 at timet
50. Figure 8 depicts the evolution of the drop of dye
times t50.2T ~a!, 0.4T ~b!, 0.6T ~c!, 0.8T ~d!, T(e), 1.2T
~f!, 2T ~g!, and 3T ~h!. The theoretical predictions are i
good qualitative agreement with experimental observatio

Figure 8 illustrates yet another phenomenon—that
drift. Since flow patternsA andC are shifted by half a spatia
period, there is a mechanism for net migration of tracer p
ticles along the conduit’s length. Even though there is no
through flow, there is net migration of particles. We refer
this migration as a Lagrangian drift. Although this pheno

FIG. 7. The spread of a blob of dye as a function of timet/T
50 ~a!, 1 ~b!, 2 ~c!, 3 ~d!, 4 ~e!, 5 ~f!, 6 ~g!, 7 ~h!, and 8~i!. The left
and right columns at each time correspond, respectively, to exp
mental data and theoretical predictions. The alternation perioT
52 s.

FIG. 8. The spread of a blob of dye as a function of timet/T
50.2 ~a!, 0.4 ~b!, 0.6 ~c!, 0.8 ~d!, 1 ~e!, 1.2 ~f!, 2 ~g!, and 3~h!. The
left and right columns correspond, respectively, to experime
data and theoretical predictions. The alternation periodT55 s.
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enon is somewhat reminiscent of dispersion, the mechan
of the Lagrangian drift is different. It would be interesting
devise an ‘‘effective diffusivity’’ for the Lagrangian drift.
Unfortunately, we have not found a convenient way for d
ing so, short of massive numerical simulations.

It is also instructive to follow the evolution of an initially
straight line of dye under chaotic flow conditions. WhenT
54 s, Fig. 9 depicts the experimental observations~left! and
theoretical predictions~right! for an initially straight line of
dye at timest50 ~a!, T/4 ~b!, T/2 ~c!, 3T/4 ~d!, andT ~e!. In
the numerical simulation, we integrated the trajectories
4000 uniformly spaced points. The images depict the stre
ing and folding process associated with chaotic advect
The figure illustrates good qualitative agreement between
periment and theory.

An important issue from the engineering point of view
the quantification of the stirring efficiency. We use the dy
rate of spread as the measure of the stirrer’s performa
Using theMATLAB image processing toolbox, we process
the photographs of the experiments at various times. E
ploying a filter ~see Sec. III!, we identified whether various
pixels were occupied by dye or not. We normalized the dy
areaA(t) at time t with the initial area occupied by the dy
drop A(0) at time 0 to obtain the dimensionless areaÂ(t)
5A(t)/A(0). Figure 10 depicts the dimensionless areaÂ(t)
as a function oft when T52, 5, and 10. The symbols an
solid lines correspond, respectively, to experimental data
best fit curves~see below!. Clearly, asT increases so does th
rate of increase ofÂ(t). To obtain a single figure of merit
we used regression to fit curves of the form exp(lt) to the
experimental data. In the above,l represents the growth rat
of the area occupied by the dye. The growth ratel is de-
picted as a function of the periodT in Fig. 11. In the range of
our experimental parameters,l increases asT increases ac-
cording to the correlationl5eT/T021, whereT0537.3. l

ri-

al

FIG. 9. Deformation of an initially straight line of dye placed
the channel’s midheight. The left and right columns correspo
respectively, to experimental observations and theoretical pre
tions at various timest/T50 ~a!, 1/4 ~b!, 1/2 ~c!, and 1 ~d!. T
54 s.
2-7
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plays a similar role to that of the Lyapunov exponent, an
can be used as a measure of the intensity of the cha
advection.

Similarly, one can determine the amount of time tha
takes for the area occupied by the dye to double. We de
the ‘‘doubling’’ time ast. Figure 12 depictst as a function of
the periodT. In the range of our experimental parameterst
decreases asT increases. This behavior is described well
a correlation of the formt; ln T n1t0, wheren;29 and
t0;23. We attempted to calculate the variance of the co
intensity as a function of time@18–20#. However, the results
of these calculations were not particularly illuminating.

As we noted in Sec. III, in the absence of diffusion, t
area occupied by the dye would be conserved@Â(t)
5const#. The continuous stretching and folding of the inte
face between the dyed liquid and the clear water enhan
the molecular diffusion process. Thus the rate of increas
the dyed area is a measure of the combined effects of stir
and molecular diffusion.

The elongation rate of the boundary between the d
blob and the clear fluid is likely to provide a better meas
of the stirring effectiveness. We were not able to track t

FIG. 10. The dimensionless areaÂ(t) as a function oft when
T52, 5, and 10. The symbols and solid lines correspond, res
tively, to experimental data and the best fit curve.

FIG. 11. The growth ratel as a function of the periodT. The
symbols and solid lines correspond, respectively, to the experim
tal data and the best fit curve.
01631
it
tic

t
te

r

es
of
g

d
e
s

interface. As an alternative, we tracked the elongation rat
an initially straight stretch of dye inserted at the devic
midheight ~Figs. 6 and 9!. Figure 13 depicts the relative
length L̂(t)5L(t)/L(0) as a function of time for flow pat-
ternsA ~squares, no alternations! andA-C ~diamonds, alter-
nation periodT54). When the electrode potentials were n
alternated, the line elongated nearly linearly according to
correlationL̂(t);110.4t. In the presence of chaotic adve
tion ~flow patternC, T54), the elongation rate was expo
nential and correlated well withL̂(t);exp(0.33t). The posi-
tive growth rate of 0.33 is consistent with chaotic advectio

We conclude our discussion with a few comments on
suitability of MHD stirring for microdevices. The MHD
force is a volumetric one. Hence, as the size of the dev
decreases, the magnitude of the velocity decreases rap
There are, however, a few mitigating factors. As the char
teristic length decreases, the current intensity increases.
characteristic velocity in terms of the electrode potential d
ference (V) is U5sVB0h2/mL, wheres is the electrolyte’s
electric conductivity. Typically, the threshold potential fo
the hydrolysis of water dictates the maximum electrode
tential. Hence, we assume that this potential difference
remain the same regardless of device size. Within a perioT,

c-

n-

FIG. 12. The doubling timet as a function of the periodT. The
symbols and solid lines correspond, respectively, to the experim
tal data and the best fit curve.

FIG. 13. The relative lengthL̂(t) of an initially straight trace of
dye as a function of time. The symbols and solid lines correspo
respectively, to the experimental data and the best fit curve.
squares and diamonds correspond, respectively, to dc actuation
periodic potential alternation.T54.
2-8
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a passive tracer particle travels a relative distanceUT/L
5(sVB0T/m)(h/L)2. If we accept the argument that diffe
ent size stirrers perform similarly when the passive tra
particle travels similar relative distances within a periodT,
we may conclude that as long asT and V remain the same
andh andL are scaled down in like proportions, the stirre
performance will be size invariant.

V. CONCLUSIONS

This paper demonstrates that magnetohydrodynamics
vides a convenient way of inducing complicated flow p
terns that may be of interest for both fundamental resea
and practical applications. The flow patterns are contro
by the electrodes’ pattern and the potentials applied to
various electrodes. Photolithography provides a great am
of flexibility for patterning electrodes. In our particular e
ample, we demonstrated that by positioning the electro
transverse to the conduit’s axis and engaging only one gr
of electrodes, one can generate cellular convection. By a
nately engaging two staggered groups of electrodes, one
induce chaotic advection. As the period of alternations
creases, so does the intensity of the chaotic motion. The
otic motion facilitates effective stirring. A method was us
to evaluate the stirrer’s efficiency through image process
In the range of parameters examined in this paper, the
rer’s ‘‘efficiency’’ increased as the period of alternations i
creased. Stirrers operating according to the concepts
scribed here may be useful for microfluidic systems sin
they do not require any moving components and can be
ricated readily with standard planar microfabrication tec
nology. The theoretical predictions were in good agreem
01631
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with experimental observations, suggesting that the mode
can be used as an effective tool for the design and optim
tion of the stirrer. Interestingly, the chaotic flow also pr
vides a mechanism for the net transport of passive part
tracers along the length of the conduit. We refer to this p
nomenon as Lagrangian drift. The Lagrangian drift becom
more pronounced as the period of the alternations increa
The drift is somewhat reminiscent of dispersion, but it
caused by a different physical mechanism. The phenome
can probably be quantified through the use of an effec
diffusion coefficient. We defer the derivation of such a d
fusion coefficient to future work.

APPENDIX: ACCELERATED RATE OF CONVERGENCE

Equations~10! and ~11! of Sec. IV provide expression
for the velocity components in series form. Unfortunate
when y approachesW/2, the series converge slowly~like
k21), and it may not be practical to use these solutions
compute the passive tracers’ trajectories. The slow con
gence of series~10! and~11! results from the series attemp
ing to approximate a singular function. This gives rise to t
Gibbs phenomenon and slow convergence. Happily, one
recast the series in a form that allows rapid convergen
Briefly, we expand the hyperbolic functions in the series in
geometric series to obtain double series. Subsequently
change the order of summation. This allows us to sum
new inner series in a closed form. The new closed fo
functions mimic the singularities of the original expressio
Thus, the resulting series converges very rapidly. The vari
steps of the derivation are straightforward, and they are o
lined below. We start with the series solution foru:
u5 (
n50

`
2

m

sinh~my!

cosh~mŴ/2!
cos@mx#

52 (
n50

`
2

m

em~y2Ŵ/2!~12e22my!

~11e2mŴ!
cos@mx#

52 (
n50

` H 2

m
em~y2Ŵ/2!~12e22my!cos@mx#(

k50

`

~21!ke2mkŴJ
52 (

k50

`

~21!kH (
n50

`
2

m
em~y2Ŵ/22kŴ!~12e22my!cos@mx#J

52 (
k50

`

~21!kH (
n50

`
2

m
em~y2Ŵ/22kŴ! cos@mx#J 1 (

k50

`

~21!kH (
n50

`
2

m
em~2y2Ŵ/22kŴ! cos@mx#J . ~A1!

Applying the identity@21#

(
n50

`
1

@112n#
exp@2~2n11!t#cos@~2n11!x#5

1

4
lnFcosht1cosx

cosht2cosxG , ~A2!

we have
2-9
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u52
1

2p
(
k50

`

~21!k lnH cosh@~2y1Ŵ/21kŴ!p#1cos~px!

cosh@~2y1Ŵ/21kŴ!p#2cos~px!

cosh@~y1Ŵ/21kŴ!p#2cos~px!

cosh@~y1Ŵ/21kŴ!p#1cos~px!
J . ~A3!

Similarly,

n52 (
n50

`
2

m F cosh~my!

cosh~mŴ/2!
21Gsin@mx#52 (

n50

`
2

m

emy1e2my

emŴ/21e2mŴ/2
sin@mx#1 (

n50

`
2

m
sin@mx#

52 (
n50

`
2

m

em~y2Ŵ/2!~11e22my!

~11e2mŴ!
sin@mx#1 (

n50

`
2

m
sin@mx#

52 (
n50

` H 2

m
em~y2Ŵ/2!~11e22my!sin@mx#(

k50

`

~21!ke2mkŴJ 1 (
n50

`
2

m
sin@mx#

52 (
k50

`

~21!kH (
n50

`
2

m
em~y2Ŵ/22kŴ!~11e22my!sin@mx#J 1 (

n50

`
2

m
sin@mx#

52 (
k50

`

~21!kH (
n50

`
2

m
em~y2Ŵ/22kŴ! sin@mx#J 2 (

k50

`

~21!kH (
n50

`
2

m
em~2y2Ŵ/22kŴ! sin@mx#J 1 (

n50

`
2

m
sin@mx#.

~A4!
,
Next, we apply the identities@21#

(
n50

`
1

@112n#
exp@2~2n11!t#sin@~2n11!x#

5
1

2
arctanF sinx

sinht G ~A5!

and

(
n50

`
1

@112n#
sin@~2n11!t#5

p

4
sgn~ t !, 2p,t,p,

~A6!

to obtain

n5
1

2
sgn~x!2

1

p
(
k50

`

~21!k

3FarctanH sin~px!

sinh@~2y1Ŵ/21kŴ!p#
J

1arctanH sin~px!

sinh@~y1Ŵ/21kŴ!p#
J G . ~A7!

In the above,21,x,1. Given the periodicity inx, the for-
mula can be readily extended foruxu.1.
01631
The series~A3! and ~A7! converge rapidly. For example

whenŴ52/3, the first six terms in the series forv(0.5,0.5)
are 2.57331021, 9.8931022, 21.20031022, 1.510
31023, 1.82331024, and 2.24531025. Figure 14 depicts

the vertical velocityv(x,0) as a function ofx when Ŵ
52/3, using Eq.~11! with five terms~dashed line!, Eq. ~11!
with 100 terms~solid line!, and the accelerated series~A7!
with five terms~circles!. Witness that Eq.~11! exhibits the
Gibbs phenomenon~oscillatory, nonphysical behavior! while
the accelerated series behaves smoothly.

FIG. 14. The velocityv(x,9/20) as a function ofx calculated
with series~11! with five terms~dashed line!, series~11! with 100
terms~solid line!, and Eq.~A7! with five terms~circles!.
2-10
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